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Abstract—It is undeniable that Internet of Things (IoT) in big data era can provide us with huge volumes of multi-dimensional data,
transforming our society into a much more intelligent one. In order to fit for the multi-dimensional data processing in big data era,
multi-dimensional range queries, especially over cloud platform, have received considerable attention in recent years. However, as the
cloud server is not fully trustable, designing multi-dimensional range queries over encrypted data becomes a research trend, and many
solutions have been proposed in the literature. Nevertheless, most existing solutions suffer from the leakage of the single-dimensional
privacy, and such leakage would severely put the data at risk. Although a few existing works have addressed the problem of
single-dimensional privacy, they are impractical in some real scenarios due to the issues of inefficiency, inaccuracy, and
two-cloud-server requirement. Aiming at solving these issues, in this paper, we propose a practical and privacy-preserving
multi-dimensional range query (PRQ) scheme. Specifically, in our proposed PRQ scheme, we first index the multi-dimensional dataset
with an R-tree and reduce R-tree based range queries to the problem of point intersection and range intersection. Then, by employing
the lightweight matrix encryption technique, we design two novel algorithms for PRQ, i.e., multi-dimensional point intersection predicate
encryption (PIPE) and multi-dimensional range intersection predicate encryption (RIPE), which can preserve the privacy of the
proposed point intersection algorithm and range intersection algorithm, and further preserve the single-dimensional privacy of the
proposed PRQ scheme. Detailed security analysis shows that our proposed PRQ scheme is indeed privacy-preserving. In addition,
extensive simulations are conducted, and the results also demonstrate its efficiency.

Index Terms—Multi-dimensional range query, cloud computing, encrypted data, single-dimensional privacy, R-tree
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1 INTRODUCTION

The advances of Internet of Things [1] and information
communcation techniques [2] have recently promoted the
surge of big data and the digitization of our lives as well.
Motivated by the wealth of intelligence in the big data, data
owners desire to mine the data and offer a series of query
services to some potential users. Meanwhile, to enjoy the
accessibility and scalability of the cloud computing, data
owners are willing to outsource their local data and the
corresponding query services to a powerful cloud. However,
since the data may contain some sensitive information and
the cloud server is not fully trusted, data owners demand
to encrypt the data for protecting the data privacy [3], [4].
Although the data encryption techniques can successfully
address the problem of the privacy, they also introduce a
great obstacle into the process of query services execution.
Thus, various privacy-preserving query schemes over en-
crypted data were proposed in the literature. Among them,
the multi-dimensional range query over encrypted data [5]–
[15] is one of the most popular query services.

Before introducing these schemes, we first give an
example over a plaintext dataset to illustrate the multi-
dimensional range query and its privacy issues. Suppose
that a data owner has a census dataset with ten data records,
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TABLE 1
An Illustrative Census Dataset

Record identity Gender Age Degree
ID1 0 (Female) 23 1 (Bachelor)
ID2 0 (Female) 26 2 (Master)
ID3 1 (Male) 29 3 (PhD)
ID4 1 (Male) 27 1 (Bachelor)
ID5 1 (Male) 24 1 (Bachelor)
ID6 0 (Female) 29 3 (PhD)
ID7 0 (Female) 23 1 (Bachelor)
ID8 1 (Male) 22 2 (Master)
ID9 1 (Male) 24 1 (Bachelor)
ID10 1 (Male) 28 2 (Master)

as shown in TABLE 1. Each data record has three attributes,
i.e., gender, age, and degree. For the gender attribute, we use
0 to denote “Female” and 1 to denote “Male”. For the degree
attribute, we use 1 to denote “Bachelor”, 2 to denote “Mas-
ter”, and 3 to denote “PhD”. Meanwhile, the data owner
outsources the dataset to the cloud. Then, a query user can
launch multi-dimensional range query requests to the cloud.
For example, a query “Q1 = [0, 0] ∧ [25, 27] ∧ [1, 3]” aims to
search the data records satisfying whose gender is 0 (i.e.,
“Female”), and age falls in [25, 27] and degree falls in [1, 3]
(i.e., {“Bachelor”, “Master”, “PhD”}). Upon receiving this
query, the cloud server searches on the dataset and returns
the qualified record, i.e., ID2 = {“Female”, 26, “Master”},
to the query user. To achieve multi-dimensional range query
over encrypted data, many schemes were proposed [5]–[15]
but they suffer from either the single-dimensional privacy
issue or practicality issues.
• Single-dimensional privacy issue: The single-
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dimensional privacy refers to the information on which
records satisfy each single dimension of the query range,
e.g., all records {ID1, ID2, · · · , ID10} satisfy the query Q1

on the degree dimension. The leakage of single-dimensional
privacy discloses more private information to the cloud
server than that the cloud server is allowed to know, which
may have a disastrous consequence on the privacy of query
requests and dataset. On the one hand, it may leak the
privacy of query requests. For example, if the cloud server
knows that all records {ID1, ID2, · · · , ID10} satisfy Q1 on
the degree dimension, it can deduce that the query range of
Q1 on the degree dimension is [1, 3]. On the other hand, it
may leak the privacy of the dataset. For example, when a
cloud server has processed three query requests, including

Q1 = [0, 0] ∧ [25, 27] ∧ [1, 3]

Q2 = [0, 0] ∧ [23, 27] ∧ [2, 3]

Q3 = [0, 1] ∧ [28, 30] ∧ [3, 3],

from the single-dimensional privacy of Q1, Q2 and Q3 on
the degree dimension, it can deduce that

(1) all records {ID1, ID2, · · · , ID10} satisfy the query
request Q1 on the degree dimension;

(2) {ID2, ID3, ID6, ID8, ID10} satisfy the query re-
quest Q2 on the degree dimension;

(3) {ID3, ID6} satisfy the query request Q3 on the
degree dimension.

From these information, the cloud server can easily
deduce that {ID3, ID6} ⊆ {ID2, ID3, ID6, ID8, ID10} ⊆
{ID1, ID2, · · · , ID10}. Since the domain of degree has
three values, from the containment relationship and pop-
ulation ratio of degree, the cloud server can deduce that
{ID3, ID6} have PhD degree, {ID2, ID8, ID10} have Mas-
ter degree, and {ID1, ID4, ID5, ID7, ID9} have Bachelor
degree. In this case, the degree information is completely
leaked. Similarly, the cloud server can easily break the
privacy of other attributes based on the single-dimensional
privacy when the corresponding domain is not very large,
e.g., gender attribute. Therefore, the leakage of single-
dimensional privacy may have a disastrous consequence on
the privacy of query requests and dataset.

However, most existing multi-dimensional range query
schemes [5], [6], [12]–[15] suffer from the leakage of single-
dimensional privacy. Specifically, the order-preserving en-
cryption (OPE) schemes [5], [6] leak the single-dimensional
privacy because the OPE leaks the order of the data.
Schemes [12]–[15] leak the single-dimensional privacy be-
cause they decompose the multi-dimensional range queries
into multiple single-dimensional range queries.
• Practicality issues: Although some existing schemes

can address the single-dimensional privacy, they suffer
from practicality issues, including query privacy leakage,
inefficiency, inaccuracy, and two-cloud-server requirement.
Specifically, the bucketization based range query schemes
[7], [8] can only return query results with false-positive
records and impose most of range queries’ computational
cost on query users who are usually considered to be
resource-constrained. Public key cryptography based range
query schemes [9]–[11] are computationally expensive.
Meanwhile, the schemes [9], [11] cannot preserve query pri-
vacy. The recently proposed scheme TRQED+ [16] achieves

single-dimensional privacy by deploying two non-colluding
cloud servers. Compared with a single-server model, the
two-serve model is less practical because it has two limita-
tions, i.e., (i) the non-colluding assumption is a little strong
in some scenarios; and (ii) there is additional communi-
cation cost required between the two servers. Therefore,
it is still highly challenging to achieve practical multi-
dimensional range queries with single-dimensional privacy.

Aiming at the above challenge, in this paper, we pro-
pose a single-dimensional privacy-preserving and practi-
cal multi-dimensional range query (PRQ) scheme under
the single-server setting. In our proposed PRQ scheme,
same as the work in [16], we first index the multi-
dimensional dataset with an R-tree structure and reduce
R-tree based range queries to the problem of multi-
dimensional point intersection and multi-dimensional range
intersection. The point intersection is to determine whether
a multi-dimensional data point is in the query range or not.
The range intersection is to determine whether two multi-
dimensional ranges intersect or not. Second, we leverage
a coding technique to design a multi-dimensional point
intersection algorithm and a multi-dimensional range in-
tersection algorithm. Then, we design a multi-dimensional
point intersection predicate encryption (PIPE) scheme and
a multi-dimensional range intersection predicate encryption
(RIPE) scheme by applying the lightweight matrix encryp-
tion technique to preserve the privacy of the proposed point
intersection algorithm and range intersection algorithm. The
matrix encryption is lightweight because (i) it encrypts
vectors and matrices into vectors and matrices; and (ii) the
computational cost over the plaintext vectors and matrices
is the same as that over the encrypted vectors and matrices.
Based on PIPE and RIPE, we propose our PRQ scheme.
Specifically, our contributions are three folds as follows.
• First, we leverage the coding technique to design a

multi-dimensional point intersection algorithm and a multi-
dimensional range intersection algorithm. Concretely, we
first figure out why preserving the single-dimensional pri-
vacy for the point intersection and range intersection is
challenging. We summarize it as one reason, i.e., the basic
operations of the point intersection and range intersection
are data comparison, and it is hard to incorporate multiple
data comparisons into one data comparison. In our algo-
rithms, we employ the coding technique to transform data
comparison into the problem of equality test and incorpo-
rate multiple equality tests into one equality test.

Specifically, suppose that x is a multi-dimensional record
and Q is a multi-dimensional query range. The intuition of
the coding technique is to respectively represent x and Q
to vectors {Xi,X

′
i}di=1 and matrices {Qi}di=1 (as discussed

in Subsection 4). Then, we can determine whether x
?
∈ Q

by testing
∑d
i=1 ti(XiQiX

′T
i − 1)

?
= 0, where {ti}di=1 are

random real numbers. That is, the multiple comparisons in
range queries are transformed to (i) perform some matrix
multiplication operations over the coded vectors or matri-
ces; and (ii) test whether the computed result is equal to 0

or not. In this case, our scheme only leaks whether x
?
∈ Q,

so it can preserve the single-dimensional privacy.
Example 1. Let x = (16, 163) be a data record and Q =

[20, 30] ∩ [155, 165] is a query range. If we intend to
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determine whether x
?
∈ Q, we have to do comparisons 16

?
∈ [20, 30]⇔ 16

?

≥ 20 and 16
?

≤ 30

163
?
∈ [155, 165]⇔ 163

?

≥ 155 and 163
?

≤ 165.

If we respectively do the comparisons 16
?
≥ 20, 16

?
≤ 30,

163
?
≥ 155, and 163

?
≤ 165, it will leak the information

of 16 /∈ [20, 30] and 163 ∈ [155, 165], i.e., the single-
dimensional privacy. For a better privacy, we expect
that the multi-dimensional range queries only leak the

information of x
?
∈ Q and preserve the privacy of

the information on which dimensions satisfy the query
range and which dimensions do not satisfy the query
range. To avoid the leakage of the single-dimensional
privacy, we use the coding technique to respectively
represent x and Q to vectors {Xi,X

′
i}2i=1 and matrices

{Qi}2i=1. Then, we can determine whether x
?
∈ Q by

testing
∑2
i=1 ti(XiQiX

′T
i − 1)

?
= 0. In this example, our

scheme only leaks that (16, 163) /∈ [20, 30] ∩ [155, 165]
and has no idea on which dimensions do not satisfy the
query range.

• Second, we design our PIPE scheme and RIPE scheme
by applying the lightweight matrix encryption to the above
point intersection algorithm and range intersection algo-
rithm. Both PIPE scheme and RIPE scheme can preserve
single-dimensional privacy. It is worth noting that besides
multi-dimensional range queries, PIPE scheme and RIPE
scheme can also be applied to other scenarios with the
single-dimensional privacy issue, e.g., conjunctive queries.
Meanwhile, based on the PIPE and RIPE schemes, we pro-
pose our PRQ scheme.

Since the key idea of our scheme is to transform multiple
data comparisons into one equality test, our scheme is also
applicable to other multi-dimensional data structures that
require multiple data comparisons with single-dimensional
privacy issue, e.g., k-d-tree, the variants of R-tree, and BSP
tree. It is worth noting that the searching process of these
data structures usually involves both single data compar-
ison and multiple data comparisons. The former can be
directly performed over the corresponding values. The latter
can be achieved by our proposed scheme to protect the
single-dimensional privacy.
• Third, we formally prove that PIPE scheme and RIPE

scheme are selectively secure and show that our PRQ
scheme is privacy-preserving. In addition, we conduct ex-
periments to evaluate the performance of our PRQ scheme,
and the results show that our PRQ scheme is more efficient
than existing solutions. To the best of our knowledge, our
PRQ scheme is the most practical multi-dimensional range
query scheme with single-dimensional privacy.

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model,
and design goal. Then, we describe some preliminaries in
Section 3. In Section 4, we present two intersection algo-
rithms. In Section 5, we present the PIPE scheme and RIPE
scheme. In Section 6, we propose our PRQ scheme, followed
by security analysis and performance evaluation in Section 7
and Section 8, respectively. In Section 9, we present some
related work. Finally, we draw our conclusion in Section 10.

2 MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

1. Dataset Outsourcing 

2. R
ange Q

uery R
equest

Data Owner Query Users

3. Query Response

0. Authorized Key

Return records falling 
in the query range.

Build Index

Dataset Searchable Tree

Cloud Server

Fig. 1. System model under consideration

2.1 System Model
In our system model, we consider a typical cloud-assisted
range query model, which involves three types of entities,
i.e., a data owner, a cloud server, and multiple query users
U = {U1, U2, · · · } as shown in Fig. 1.
• Data Owner: The data owner has a dataset containing

a collection of multi-dimensional data records. To offer a
range query service to query users, the data owner builds a
tree-based searchable index for the dataset. Then, the data
owner encrypts both the dataset and index, and outsources
them to the cloud server together.
• Cloud Server: The cloud server has powerful comput-

ing capability and abundant storage space. It is a bond
between the data owner and query users, as it not only
stores the encrypted dataset for the data owner but also
offers the range query service to query users. Specifically, on
receiving a range query request, the cloud server will search
on the encrypted dataset and find out the data records
satisfying the query request. Finally, the cloud server will
return these records to the query user as the query result.
• Query Users U = {U1, U2, · · · }: There are multiple

query users U = {U1, U2, · · · } in the system. When these
query users register in the system, the data owner will
authorize them with an authorized key as shown in Fig. 1.
After the authorization, the query users can enjoy the range
query service from the cloud.

2.2 Security Model
In our security model, the data owner is assumed to be
trusted because it provides the dataset and initializes the
entire system. For the query users, they are assumed to be
honest. That is, they will follow the scheme to launch range
query requests. For the cloud server, it is assumed to be
honest-but-curious. It will honestly follow the scheme to store
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the outsourced data received from the data owner and offer
the range query service to query users. However, it may be
curious about some private information, including

(1) Single-dimensional privacy: the query result for each
dimension of the query range;

(2) Query privacy: the plaintext of query requests and
the corresponding query results;

(3) Dataset privacy: the plaintext of records in the
dataset.

Besides, we assume that there is no collusion between the
cloud server and query users. The non-collusive assump-
tion is reasonable because the penalty of collusion is high,
including being prosecuted. Note that there may be other
active attacks in the system, such as DoS attack and data
pollution attack. Since this work focuses on privacy preser-
vation, those attacks are beyond the scope of this paper and
will be discussed in our future work.

2.3 Design Goal
In this work, our goal is to design an efficient and privacy-
preserving multi-dimensional range query scheme, and the
following objectives should be satisfied.
• Privacy preservation: In our proposed scheme, the basic

requirement is privacy preservation, i.e., the content of the
outsourced dataset, query requests, as well as query results
should be kept secret from the cloud server. Meanwhile, the
single-dimensional privacy of the query results should be
preserved.
• Efficiency: For achieving the above privacy preservation

requirement, the range queries in our scheme will inevitably
incur an additional computational cost. Thus, we also aim
to minimize the computational cost of range queries and
improve query efficiency as much as possible.

3 PRELIMINARIES

In this section, we first review the R-tree structure and the
R-tree based range query algorithm [17], which serve as the
building blocks of our scheme. After that, we introduce a
useful data comparison algorithm [18].

3.1 R-tree
R-tree (described in [17]) is a tree data structure and can
be used for organizing multi-dimensional data records. The
main idea of R-tree construction is to recursively cluster
nearby data records and use a minimum bounding rectangle
(MBR) to represent them in the higher level of the tree. In
the R-tree, there are two types of nodes, i.e., leaf nodes and
internal nodes. Each leaf node contains a multi-dimensional
data record, and each internal node has an MBR and a
pointer that points to its child nodes.

R-tree can be used as an efficient index for range queries
over multi-dimensional data [17], and it is rated as the most
prominent spatial index [19]. Suppose that X is a multi-
dimensional dataset. We can represent X to an R-tree T.
Without loss of generality, we assume that each leaf node
of T corresponds to a data point x and each internal node
is in the form of (B, p = {p1, p2, · · · }), where B is an MBR
and p is a set of pointers that point to its child nodes. Given

a range query Q, the searcher can efficiently search on T
to find out the data records falling in Q, i.e., {x|x ∈ Q}.
As shown in Algorithm 1, the search process contains two
phases, i.e., filtration and verification as follows.

Algorithm 1 RangeQuery(Tree T, Query range Q)
// Filtration

1: C = ∅; // Initialize the candidate result
2: C = Filtration(T.root,Q);

// Verification
3: R = ∅; // Initialize the final query result
4: for each x ∈ C do
5: if x ∈ Q then
6: R = R∪ {x};
7: return R;

Algorithm 2 Filtration(Node node, Query range Q)
1: if node is a leaf node then
2: Add node’s data record into C;
3: else
4: if B ∩ Q 6= ∅ then
5: for each pi ∈ p do
6: Filtration(node.pi, Q)
7: return C;

• Filtration phase: In the filtration phase, the searcher
recursively searches on T to find a candidate set C, which
contains all data records that possibly fall in Q as shown
in Algorithm 2. Specifically, the searcher starts to search T
from the root node. When the searched node is an internal
node (B, p = {p1, p2, · · · }), the searcher checks whether B
intersects with Q. If yes, the searcher needs to search each
node.pi for pi ∈ p. When the searched node is a leaf node
with a data record x, the searcher directly adds x into the
candidate set C.
• Verification phase: In the verification phase, the searcher

verifies whether each candidate record x ∈ C is in Q or not.
If yes, the searcher adds x into the query result R.

In summary, the range query algorithm involves two
operations:

(1) Point intersection: determine whether x
?
∈ Q.

(2) Range intersection: determine whether B ∩ Q ?
= ∅.

3.2 Data Comparison Algorithm

In this subsection, we review a data comparison algorithm
that was proposed by Boneh et al in [18]. Its idea is to use
the coding technique to transform the comparison of two
values into an equality test. Let x and q be two integers that
need to be compared, and they are in the range of [0, N2−1].
Then, we can compare them as follows.

Step 1: Code all values in [0, N2 − 1] to be an N × N
matrix as shown in Fig. 2. In this matrix, each value has a
row coordinate and a column coordinate. For example, the
value iN + j has the row coordinate (i+ 1) and column co-
ordinate (j + 1). Based on them, x and q can be represented
to two-dimensional coordinates (ix, jx) and (iq, jq), where
ix, iq are the row coordinate of x and q, jx, jq are the column
coordinate of x and q. That is,{

ix = b xN c+ 1; jx = x mod N + 1;

iq = b qN c+ 1; jq = q mod N + 1.
(1)
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𝟎 𝟏 ⋯ 𝒋 ⋯ 𝑵− 𝟏

𝑵 𝑵+ 𝟏 ⋯ 𝑵+ 𝒋 ⋯ 𝟐𝑵− 𝟏

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝒊(𝑵− 𝟏) 𝒊(𝑵 − 𝟏)+1 ⋯ 𝒊𝑵 + 𝒋 ⋯ 𝒊𝑵 − 𝟏

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝑵(𝑵 − 𝟏) 𝑵(𝑵 − 𝟏)+1 ⋯ 𝑵 𝑵− 𝟏 + 𝒋 ⋯ 𝑵𝟐 − 𝟏

row 𝒊

column 𝒋

Fig. 2. Representation of the range [0, N2 − 1]

Step 2: Based on (ix, jx), construct three N -dimensional
vectors for x as

x̃ =

[
Oix

1N−ix

]
, x̄ = eix , x̂ =

[
Ojx−1

1N−jx+1

]
, (2)

where (i) Oix denotes an ix-dimensional zero vector; (ii)
1N−ix denotes an (N − ix)-dimensional vector and all ele-
ments are 1; and (iii) eix denotes an N -dimensional identity
vector and the ix-th element is 1.
Observation 1. We can observe that{

x ≤ q ⇔ x̃[iq] + x̄[iq] ∗ x̂[jq] = 1

x > q ⇔ x̃[iq] + x̄[iq] ∗ x̂[jq] = 0.
(3)

Furthermore, let X = [x̃T x̄T ] and X′ = [1 x̂T ]. Let Q be
a 2N × (N + 1) matrix satisfying

Q[iq, 1] = Q[N + iq, jq + 1] = 1, (4)

and other elements in Q are 0. We have

x̃[iq] + x̄[iq] ∗ x̂[jq] =
[
x̃T x̄T

]
Q

[
1
x̂

]
= XQX′T .

Then, we can deduce that{
x ≤ q ⇔ x̃[iq] + x̄[iq] ∗ x̂[jq] = 1⇔ XQX′T = 1

x > q ⇔ x̃[iq] + x̄[iq] ∗ x̂[jq] = 0⇔ XQX′T = 0.

From Observation 1, we can see that the data comparison
between x and q can be transformed to the equality test of
XQX′T = 1 or XQX′T = 0.

4 INTERSECTION ALGORITHMS

Since the basic operations of the R-tree based range query al-
gorithm are multi-dimensional point intersection and multi-
dimensional range intersection, in this section, we propose a
multi-dimensional point intersection algorithm and a multi-
dimensional range intersection algorithm by using the data
comparison algorithm in Subsection 3.2.

4.1 Point Intersection Algorithm
In this subsection, we introduce a multi-dimensional point
intersection algorithm. For a clear description, we first in-
troduce a one-dimensional point intersection algorithm.

One-dimensional point intersection algorithm: The
idea of one-dimensional point intersection algorithm is to
transform the problem of the point intersection into the
problem of equality test by using the coding technique. Sup-
pose that x is a data and Q = (ql, qu] is a one-dimensional

range, where x, ql, qu ∈ [0, N2 − 1]. Although our scheme
only considers the query ranges in the form of Q = (ql, qu],
it can be adapted to process other forms of query ranges like
[ql, qu]. Specifically, since the query ranges in our scheme are
integers, the query range [ql, qu] is equivalent to the query
range (ql − 1, qu]. With x and Q, the one-dimensional point
intersection algorithm can determine whether x ∈ Q or not
by the following steps.

Step 1: According to the data comparison algorithm in
Subsection 3.2, we represent x to three vectors {x̃, x̄, x̂} and
further use them to construct X = [x̃T x̄T ] and X′ = [1 x̂T ].

Step 2: We respectively represent ql and qu in Q to two
coordinates (il, jl) and (iu, ju). We have

x ∈ (ql, qu]⇔ x > ql and x ≤ qu

⇔

{
x̃[il] + x̄[il] ∗ x̂[jl] = 0

x̃[iu] + x̄[iu] ∗ x̂[ju] = 1

⇔ x̃[il] + x̄[il] ∗ x̂[jl] + x̃[iu] + x̄[iu] ∗ x̂[ju] = 1. (5)

Similarly, we have

x /∈ (ql, qu]

⇔{x ≤ ql and x < qu} or {x > qu and x > ql}

⇔

{
x̃[il] + x̄[il] ∗ x̂[jl] = 1

x̃[iu] + x̄[iu] ∗ x̂[ju] = 1
or

{
x̃[il] + x̄[il] ∗ x̂[jl] = 0

x̃[iu] + x̄[iu] ∗ x̂[ju] = 0

⇔


x̃[il] + x̄[il] ∗ x̂[jl] + x̃[iu] + x̄[iu] ∗ x̂[ju] = 2

or

x̃[il] + x̄[il] ∗ x̂[jl] + x̃[iu] + x̄[iu] ∗ x̂[ju] = 0.

(6)

Based on (il, jl) and (iu, ju), we construct a 2N × (N + 1)
matrix Q such that

Q[il, 1] = Q[N + il, jl + 1] = Q[iu, 1] = Q[N + iu, ju + 1] = 1, (7)

and other elements in Q are 0. Especially, if il = iu, we set
Q[il, 1] = Q[iu, 1] = 2. Similarly, if il = iu and jl = ju, we
set Q[N + il, jl + 1] = Q[N + iu, ju + 1] = 2. Then, Eq. (5)
is equivalent to XQX′T = 1, and Eq. (6) is equivalent to
XQX′T = 0 or XQX′T = 2. We can further deduce that{

x ∈ (ql, qu]⇔ XQX′T = 1

x /∈ (ql, qu]⇔ XQX′T = 0 or XQX′T = 2.
(8)

Thus, one-dimensional point intersection “x
?
∈ Q” is

transformed into the equality test, i.e., “XQX′T
?
= 1”. Next,

we extend one-dimensional point intersection algorithm to
multi-dimensional point intersection algorithm.

Point intersection for multi-dimensional data: The key
idea of multi-dimensional point intersection algorithm is to

(i) decompose multi-dimensional point intersection into
multiple one-dimensional point intersection;

(ii) transform the problem of one-dimensional point in-
tersection determination into an equality test;

(iii) incorporate all one-dimensional equality tests into
one equality test.

Suppose that x = (x1, x2, · · · , xd) is a d-dimensional
data point and Q = (Q1, Q2, · · · , Qd) is a d-dimensional
range, where Qi = (ql,i, qu,i] and xi, ql,i, qu,i ∈ [0, N2 − 1]
for i = 1, 2, · · · , d. Then, the multi-dimensional point inter-
section algorithm determines whether x ∈ Q as follows.

Step 1: According to the point intersection algorithm for
one-dimensional data, we represent each xi ∈ x to three
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vectors as {x̃i, x̄i, x̂i} and further use them to construct Xi =
[x̃Ti x̄Ti ] and X′i = [1 x̂Ti ] for i = 1, 2, · · · , d.

Step 2: We respectively represent each Qi = (ql,i, qu,i] to
a 2N×(N+1) matrix Qi as Eq. (7) for i = 1, 2, · · · , d. Based
on Eq. (8), we have

x ∈ Q ⇔


x1 ∈ Q1 ⇔ X1Q1X

′T
1 = 1

x2 ∈ Q2 ⇔ X2Q2X
′T
2 = 1

· · · · · · · · ·
xd ∈ Qd ⇔ XdQdX

′T
d = 1.

In this case, we have transformed the problem of multi-
dimensional point intersection into the above multiple
equality tests. In the following, we consider how to incor-
porate multiple equality tests into one equality test. If each
equality XiQiX

′T
i = 1 holds for i = 1, 2, · · · , d, for any

d random non-zero real numbers {t1, t2, · · · , td}, we have∑d
i=1 ti(XiQiX

′T
i − 1) = 0.

Note that the probability that
∑d
i=1 ti(XiQiX

′T
i − 1) =

0 but there exists i such that XiQiX
′T
i 6= 1 is neg-

ligible. That is, if there exists i such that XiQiX
′T
i 6=

1, we have
∑d
i=1 ti(XiQiX

′T
i − 1) = 0 ⇔ ti =∑

1≤j≤d,j 6=i tj(XjQjX
′T
j −1)

XiQiX′Ti −1
. Since ti is randomly chosen from

the real domain and the real domain has an unlimited
number of real numbers, the probability that ti is exactly

chosen to be ti =
∑

1≤j≤d,j 6=i tj(XjQjX
′T
j −1)

XiQiX′Ti −1
is theoretically

to be 0. In experiments, we usually use 64-bit double data
type to represent ti. Since the total number of double num-
bers are 264, the probability that ti is exactly chosen to be

ti =
∑

1≤j≤d,j 6=i tj(XjQjX
′T
j −1)

XiQiX′Ti −1
is about 1

264 that is negligible.
Thus, we can deduce that

x ∈ Q ⇔
d∑

i=1

ti(XiQiX
′T
i − 1) = 0, (9)

and can achieve the multi-dimensional equality test by a
single equality test.

4.2 Range Intersection Algorithm
In this subsection, based on the data comparison algorithm
in Subsection 3.2, we introduce a multi-dimensional range
intersection algorithm. For a clear description, we first in-
troduce a one-dimensional range intersection algorithm.
• One-dimensional range intersection algorithm: Same

as the one-dimensional point intersection algorithm, the key
idea of the one-dimensional range intersection algorithm
is to transform the problem of the range intersection into
the problem of equality test by using coding technique.
Suppose that B = [bl, bu] and Q = (ql, qu] are two ranges,
where bl, bu, ql, qu ∈ [0, N2−1]. Then, the range intersection
algorithm is able to determine whether B ∩ Q ?

= ∅. When
B ∩ Q 6= ∅, we have bl ≤ qu and bu > ql. According to the
data comparison algorithm, we represent bl to three vectors

{b̃l, b̄l, b̂l} and further use them to construct Bl = [b̃
T

l b̄Tl ]

and B′l = [1 b̂
T

l ]. Similarly, we represent bu to three vectors

as {b̃u, b̄u, b̂u} and use them to construct Bu = [b̃
T

u b̄Tu ]

and B′u = [1 b̂
T

u ]. Meanwhile, we can represent ql and qu
to two 2N × (N + 1) matrices Ql and Qu as Eq. (4). In this
case, we have

B ∩Q 6= ∅ ⇔ bl ≤ qu and bu > ql ⇔

{
BlQuB

′T
l = 1

BuQlB
′T
u = 0.

(10)

Then, the one-dimensional range intersection B ∩ Q ?
= ∅

is transformed into the equality test BlQuB
′T
l

?
= 1 and

BuQlB
′T
u

?
= 0.

• Multi-dimensional range intersection algorithm:
Same as the multi-dimensional point intersection algorithm,
the key idea of the multi-dimensional range intersection
algorithm is to

(i) decompose multi-dimensional range intersection
into multiple one-dimensional range intersection;

(ii) transform the problem of one-dimensional range in-
tersection determination into an equality test;

(iii) incorporate all equality tests into one equality test.

Suppose that B = (B1, B2, · · · , Bd) and Q =
(Q1, Q2, · · · , Qd) are two ranges, where Bi = [bl,i, bu,i],
Qi = (ql,i, qu,i], and bl,i, bu,i, ql,i, qu,i ∈ [0, N2 − 1] for
i = 1, 2, · · · , d. Then, the range intersection algorithm is
able to determine whether B ∩ Q ?

= ∅. When B ∩ Q 6= ∅,
Bi ∩ Qi 6= ∅ for i = 1, 2, · · · , d. Then, we can determine
whether B ∩ Q ?

= ∅ as follows.
According to the range intersection algorithm for one-

dimensional data, we represent each Bi to four matrices
{Bl,i,B

′
l,i,Bu,i,B

′
u,i} and represent each Qi to two matri-

ces {Ql,i,Qu,i} as Eq. (4). In this case, we can deduce that

B ∩ Q 6= ∅ ⇔ Bi ∩Qi 6= ∅ for i = 1, 2, · · · , d

⇔

{
Bl,iQu,iB

′
l,i

T
= 1

Bu,iQl,iB
′
u,i

T
= 0

for i = 1, 2, · · · , d.

In this case, we have transformed the problem of multi-
dimensional range intersection into the above multiple
equality tests. Then, we incorporate multiple equality
tests into one equality test. Specifically, if the equalities
Bl,iQu,iB

′
l,i
T

= 1 and Bu,iQl,iB
′
u,i
T

= 0 hold for
i = 1, 2, · · · , d, for any random non-zero real numbers
{tl,i, tu,i}di=1, we have

d∑
i=1

tl,i(Bl,iQu,iB
′
l,i
T − 1) +

d∑
i=1

tu,iBu,iQl,iB
′
u,i
T

= 0.

Similar to the multi-dimensional point intersection algo-
rithm, the probability that

∑d
i=1 tl,i(Bl,iQu,iB

′
l,i
T − 1) +∑d

i=1 tu,iBu,iQl,iB
′
u,i
T

= 0 but there exists i such that
Bl,iQu,iB

′
l,i
T 6= 1 or Bu,iQl,iB

′
u,i
T 6= 0 is negligible. Thus,

we can deduce that

B ∩ Q 6= ∅

⇔
d∑

i=1

tl,i(Bl,iQu,iB
′
l,i

T − 1) +

d∑
i=1

tu,iBu,iQl,iB
′
u,i

T
= 0. (11)

5 INTERSECTION PREDICATE ENCRYPTION

In this section, base on the multi-dimensional point inter-
section algorithm and multi-dimensional range intersection
algorithm, we propose a point intersection predicate en-
cryption scheme, i.e., PIPE scheme, and a range intersection
predicate encryption scheme, i.e., RIPE scheme, which can
perform multi-dimensional point intersection and range
intersection over encrypted data.
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5.1 Point Intersection Predicate Encryption
In this subsection, we introduce the PIPE scheme, which can
determine x

?
∈ Q based on the ciphertexts of x and Q.

For a clear description, we first introduce the idea about
how to encrypt x and Q. According to Eq. (9), we have
x ∈ Q ⇔

∑d
i=1 ti(XiQiX

′T
i − 1) = 0, where Xi is a 1× 2N

vector, Qi is a 2N × (N + 1) matrix, and X′i is an (N + 1)×
1 vector. Then, we can determine x

?
∈ Q by determining∑d

i=1 ti(XiQiX
′T
i − 1)

?
= 0. In this case, we only need to

encrypt Xi, Qi, and X′
T
i . We desire to use the produced

ciphertexts to determine
∑d
i=1 ti(XiQiX

′T
i −1)

?
= 0 without

disclosing the private information of the plaintexts. Since
Xi, Qi, and X′

T
i are either vector or matrix, we employ

the lightweight matrix encryption to encrypt Xi,Qi,X
′T
i .

However, it is not secure to directly encrypt Xi,Qi, and
X′

T
i [20]. Thus, we first introduce some random numbers

into them, and then apply the matrix encryption to encrypt
them. The details are as follows.

Step 1: We first choose d random numbers {si}di=1

satisfying
∑d
i=1 si = 0. Then, we choose random matrices

Rx,i ∈ R1×2, R′x,i ∈ R2×1 and RQ,i ∈ R2×2 such that
Rx,iRQ,iR

′
x,i = 0 for i = 1, 2, · · · , d. In this case, we have

d∑
i=1

ti(XiQiX
′T
i − 1) = 0

⇔
d∑

i=1

(ti(XiQiX
′T
i − 1) +Rx,iRQ,iR

′
x,i) = 0

⇔
d∑

i=1

(ti(XiQiX
′T
i − 1) +Rx,iRQ,iR

′
x,i + si) = 0.

Let

X̃i =
[
tiXi Rx,i ti 1

]
;

Q̃i =


Qi O O O

O RQ,i O O

O O −1 0

O O 0 si

 ; X̃′
i =


X′T

i

R′
x,i

1

1

 .

We have x ∈ Q ⇔
∑d
i=1 X̃iQ̃iX̃

′
i = 0. Note that the

random numbers {si}di=1 can be removed iff the data of
all dimensions are processed together. With this property,
{si}di=1 can preserve the single-dimensional privacy.

Step 2: We employ the matrix encryption to preserve
the privacy of the computation

∑d
i=1 X̃iQ̃iX̃

′
i. Let M̃ ∈

R(2N+4)×(2N+4) and M̃′ ∈ R(N+5)×(N+5) denote two in-
vertible matrices. We respectively encrypt {X̃i, X̃

′
i}di=1 and

{Q̃i}di=1 as the following equations{
CPi,1 = r1X̃iM̃; CPi,2 = r2M̃

′X̃′i
PTi = rqM̃

−1Q̃iM̃
′−1,

(12)

where r1, r2, rq are non-zero random real numbers. Mean-
while, we have

d∑
i=1

CPi,1PTiCPi,2 =
d∑
i=1

(r1 ∗ r2 ∗ rq ∗ X̃iQ̃iX̃
′
i)

= r1 ∗ r2 ∗ rq ∗ (
d∑
i=1

X̃iQ̃iX̃
′
i)

Since r1, r2, rq are non-zero numbers, we can deduce that∑d
i=1 CPi,1PTiCPi,2 = 0 ⇔

∑d
i=1 X̃iQ̃iX̃

′
i = 0, and have

x ∈ Q ⇔
∑d
i=1 X̃iQ̃iX̃

′
i = 0⇔

∑d
i=1 CPi,1PTiCPi,2 = 0.

Based on this idea, the PIPE scheme ΠPIPE =
(PipeKeyGen,PipeEnc,PipeTokenGen,PipeQuery) can be
defined as follows.
• PipeKeyGen(N) : Given N , the key generation algo-

rithm outputs the secret key skP = {M̃, M̃′}.
• PipeEnc(x, skP ) : On input x and skP , the encryptor

first constructs the matrices {X̃i, X̃
′
i}di=1 based on x. Then,

the encryptor encrypts {X̃i, X̃
′
i}di=1 into the ciphertexts

{CPi,1, CPi,2}di=1 as Eq. (12).
• PipeTokenGen(Q, skP ) : On input Q and skP , the

token generator first constructs matrices {Q̃i}di=1 based on
Q, and outputs the query tokens {PTi}di=1 as Eq. (12).
• PipeQuery({CPi,1, CPi,2}di=1, {PTi}di=1): On input the ci-

phertexts {CPi,1, CPi,2}di=1 and the query token {PTi}di=1, the

query algorithm determines whether x
?
∈ Q by determining∑d

i=1 CPi,1PTiCPi,2
?
= 0. If

∑d
i=1 CPi,1PTiCPi,2 = 0, the query

algorithm returns 1 to denote x ∈ Q and returns 0 to denote
x /∈ Q otherwise.

Remark. In the PIPE scheme, to involve more random
numbers into the ciphertexts and tokens, we respectively
add three random matrices Rx,i ∈ R1×2, R′x,i ∈ R2×1 and
RQ,i ∈ R2×2 into the ciphertexts CPi,1, CPi,2, and the token
PTi, where Rx,iRQ,iR

′
x,i = 0 for i = 1, 2, · · · , d. Since

the ciphertexts and tokens are separately generated by the
data owner and query users in our scheme, the random
matrices {Rx,i,R

′
x,i} and RQ,i should be separately cho-

sen by the data owner and query users. In the following,
we show a method to separately choose them satisfying
Rx,iRQ,iR

′
x,i = 0.

• {Rx,i,R
′
x,i}: The data owner chooses two random

matrices {Rx,i,R
′
x,i} as

Rx,i = [ux,i, ux,i]; R′x,i =

[
u′x,i
u′x,i,

]
where ux,i ∈ R and u′x,i ∈ R are two random numbers.
• RQ,i: Query users choose a random matrix RQ,i as

RQ,i =

[
rQ,i,1 rQ,i,2
rQ,i,3 −(rQ,i,1 + rQ,i,2 + rQ,i,3)

]
where {rQ,i,1, rQ,i,2, rQ,i,3} ∈ R are random numbers.

Correctness. It is easy to verify that these generated ran-
dom matrices satisfy that Rx,iRQ,iR

′
x,i = 0. Specifically,

we have

Rx,iRQ,iR
′
x,i

= [ux,i, ux,i]

[
rQ,i,1 rQ,i,2
rQ,i,3 −(rQ,i,1 + rQ,i,2 + rQ,i,3)

] [
u′x,i
u′x,i

]
=

2∑
k=1

2∑
j=1

(Rx,i)1,k ∗ (RQ,i)k,j ∗ (R′x,i)j,1

=
2∑
k=1

2∑
j=1

ux,i ∗ (RQ,i)k,j ∗ u′x,i

= ux,i ∗ u′x,i ∗ (
2∑
k=1

2∑
j=1

(RQ,i)k,j) = ux,i ∗ u′x,i ∗ 0 = 0,
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Thus, Rx,i, R′x,i, and RQ,i satisfy Rx,iRQ,iR
′
x,i = 0. In

this case, the data owner and query users can use the above
method to generate random matrices.

5.2 Range Intersection Predicate Encryption

In this subsection, we propose a multi-dimensional range
intersection predicate encryption (RIPE) scheme, which can
determine B ∩ Q ?

= ∅ based on the ciphertexts of B and Q.
For a clear description, we first introduce the idea

on how to encrypt B and Q. According to Eq. (11),
we have B ∩ Q 6= ∅ ⇔

∑d
i=1 tl,i(Bl,iQu,iB

′
l,i
T − 1) +∑d

i=1 tu,iBu,iQl,iB
′
u,i
T

= 0. Then, we can determine

B ∩ Q ?
= ∅ by determining

∑d
i=1 tl,i(Bl,iQu,iB

′
l,i
T −

1) +
∑d
i=1 tu,iBu,iQl,iB

′
u,i
T ?

= 0. In this case, we only
need to encrypt Bl,i,Ql,i,B

′
l,i,Bu,i,Qu,i, and B′u,i. We

desire to use the produced ciphertexts to determine∑d
i=1 tl,i(Bl,iQu,iB

′
l,i
T − 1) +

∑d
i=1 tu,iBu,iQl,iB

′
u,i
T ?

= 0
without disclosing the private information of the plaintexts.
Similar to the PIPE scheme, we employ the lightweight
matrix encryption to encrypt Bl,i,Ql,i,B

′
l,i,Bu,i,Qu,i,B

′
u,i.

Specifically, we first introduce some random numbers into
them, and then apply the matrix encryption to encrypt them.
The details are as follows.

Step 1: We choose random numbers {sl,i, su,i}di=1 satis-
fying

∑d
i=1(sl,i + su,i) = 0. Then, we choose random ma-

trices {RB,l,i,RB,u,i} ∈ R1×2, {RQ,l,i,RQ,u,i} ∈ R2×2 and
{R′B,l,i,R′B,u,i} ∈ R2×1 such that RB,l,iRQ,u,iR

′
B,l,i = 0

and RB,u,iRQ,l,iR
′
B,u,i = 0 for 1 ≤ i ≤ d. Then, we have

d∑
i=1

tl,i(Bl,iQu,iB
′
l,i
T − 1) +

d∑
i=1

tu,iBu,iQl,iB
′
u,i
T

= 0

⇔
d∑
i=1

(tl,i(Bl,iQu,iB
′
l,i
T − 1) + RB,l,iRQ,u,iR

′
B,l,i + su,i)

+
d∑
i=1

(tu,iBu,iQl,iB
′
u,i
T

+ RB,u,iRQ,l,iR
′
B,u,i + sl,i) = 0.

If we let

B̄l,i =
[
tl,iBl,i RB,l,i −tl,i 1

]
;

Q̄u,i =


Qu,i O O O

O RQ,u,i O O

O O 1 0

O O 0 su,i

 ; B̄′
l,i =


B′

l,i
T

R′
B,l,i

1

1

 ;

B̄u,i =
[
tu,iBu,i RB,u,i 0 1

]
;

Q̄l,i =


Ql,i O O O

O RQ,l,i O O

O O 0 0

O O 0 sl,i

 ; B̄′
u,i =


B′

u,i
T

R′
B,u,i

0

1

 ;

we have B ∩ Q 6= ∅ ⇔
∑d
i=1(B̄l,iQ̄u,iB̄

′
l,i +

B̄u,iQ̄l,iB̄
′
u,i) = 0. Similar to PIPE scheme, the random

numbers {sl,i, su,i}di=1 are used for preserving the single-
dimensional privacy.

Step 2: We employ the matrix encryption to pre-
serve the privacy of the computation

∑d
i=1(B̄l,iQ̄u,iB̄

′
l,i +

B̄u,iQ̄l,iB̄
′
u,i). Let M̄ ∈ R(2N+4)×(2N+4) and M̄′ ∈

R(N+5)×(N+5) denote two invertible matrices. We respec-
tively encrypt {B̄l,i, B̄

′
l,i, B̄u,i, B̄

′
u,i} and {Q̄u,i, Q̄l,i} as the

following equations
CBl,i,1 = r′1B̄l,iM̄; CBu,i,1 = r′1B̄u,iM̄;

CBl,i,2 = r′2M̄
′−1B̄′l,i; CBu,i,2 = r′2M̄

′−1B̄′u,i;

RTu,i = r′qM̄
−1Q̄u,iM̄

′; RTl,i = r′qM̄
−1Q̄l,iM̄

′,

(13)

where r′1, r
′
2, r
′
q are non-zero random real numbers. Mean-

while, we have
d∑
i=1

(CBl,i,1RTu,iCBl,i,2 + CBu,i,1RTl,iCBu,i,2)

=
d∑
i=1

r′1 ∗ r′2 ∗ r′q ∗ (B̄l,iQ̄u,iB̄
′
l,i + B̄u,iQ̄l,iB̄

′
u,i)

= r′1 ∗ r′2 ∗ r′q ∗
d∑
i=1

(B̄l,iQ̄u,iB̄
′
l,i + B̄u,iQ̄l,iB̄

′
u,i).

Since r′1, r
′
2, r
′
q are non-zero numbers, we can deduce that

B ∩ Q 6= ∅ ⇔
d∑

i=1

(B̄l,iQ̄u,iB̄
′
l,i + B̄u,iQ̄l,iB̄

′
u,i) = 0

⇔
d∑

i=1

(CBl,i,1RTu,iCBl,i,2 + CBu,i,1RTl,iCBu,i,2) = 0.

Based on this idea, the RIPE scheme ΠRIPE =
(RipeKeyGen,RipeEnc,RipeTokenGen,RipeQuery) can be
defined as follows.
• RipeKeyGen(N) : Given N , the key generation algo-

rithm outputs the secret key skR = {M̄, M̄′}.
• RipeEnc(B, skR) : On input B and skR, the encryp-

tor constructs the matrices {B̄l,i, B̄
′
l,i, B̄u,i, B̄

′
u,i}di=1 based

on B. Then, it encrypts {B̄l,i, B̄
′
l,i, B̄u,i, B̄

′
u,i}di=1 into the

ciphertext C = {CBl,i,1, CBl,i,2, CBu,i,1, CBu,i,2}di=1 as Eq. (13).
• RipeTokenGen(Q, skR) : On input Q and skR, the

token generator first constructs matrices {Q̄l,i, Q̄u,i}di=1

based on Q, and then encrypts them into the query token
TK = {RTl,i, RTu,i}di=1 as Eq. (13).
• RipeQuery(C, TK): On input the ciphertext C =

{CBl,i,1, CBl,i,2, CBu,i,1, CBu,i,2}di=1 and the query token
TK = {RTl,i, RTu,i}di=1, the query algorithm can determine
whether B∩Q ?

= ∅ by determining
∑d
i=1(CBl,i,1RTu,iCBl,i,2+

CBu,i,1RTl,iCBu,i,2)
?
= 0. If

∑d
i=1(CBl,i,1RTu,iCBl,i,2 +

CBu,i,1RTl,iCBu,i,2) = 0, the query algorithm returns 1 to
denote B ∩ Q 6= ∅. Otherwise, the algorithm returns 0 to
denote B ∩ Q = ∅.

6 OUR PRIVACY-PRESERVING RANGE QUERY
SCHEME

Based on the PIPE and RIPE schemes, we present a privacy-
preserving range query scheme, i.e., PRQ scheme. The
PRQ scheme ΠPRQ = (PrqKeyGen,PrqEnc,PrqTokenGen,
PrqQuery) can be defined as follows.
• PrqKeyGen(N,κ): On input N and the security param-

eter κ, the data owner generates three secret keys as

skP = {M̃, M̃′} ← PipeKeyGen(N)

skR = {M̄, M̄′} ← RipeKeyGen(N)

K ∈ {0, 1}κ for AES algorithm,
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where skP , K are used for encrypting data points, and skR
is used for encrypting the MBRs. For each query user, the
data owner authorizes them with {skP , skR,K}.
• PrqEnc(X , skP , skR,K) : On input a multi-

dimensional dataset X and the secret keys {skP , skR,K},
the data owner encrypts X as follows.

Step 1: The data owner represents X to an R-tree T.
For preserving the privacy of the dataset, the data owner
randomly permutes the child nodes of each internal node.

Step 2: Each internal node of T corresponds to an MBR B
and it is encrypted as {CBl,i,1, CBl,i,2, CBu,i,1, CBu,i,2}di=1 ←
RipeEnc(B, skR). Each leaf node of T corresponds to a
data point x and is encrypted as {CPi,1, CPi,2}di=1 ←
PipeEnc(x, skP ) and AESK(x).

Finally, the data owner outsources the encrypted R-tree,
denoted by E(T), to the cloud server via a secure channel.
• PrqTokenGen(Q, skP , skR): On input the query range

Q and {skP , skR}, the query user respectively generates
a point intersection query token and a range intersection
query token as

{PTi}di=1 ← PipeTokenGen(Q, skP )

{RTl,i, RTu,i}di=1 ← RipeTokenGen(Q, skR).

Then, the query user sends the tokens {PTi, RTl,i, RTu,i}di=1

to the cloud via a secure channel.
• PrqQuery(E(T), {PTi, RTl,i, RTu,i}di=1): On input

{PTi, RTl,i, RTu,i}di=1, the cloud server searches on E(T) to
find out the query result. The searching algorithm over an
encrypted R-tree is similar to that over a plaintext R-tree in
Algorithm 1. Differently, the conditions x ∈ Q and B∩Q 6= ∅
are respectively replaced with

∑d
i=1 CPi,1PTiCPi,2 = 0

and
∑d
i=1(CBl,i,1RTu,iCBl,i,2 + CBu,i,1RTl,iCBu,i,2) = 0.

Specifically, the searching process contains a filtration phase
and a verification phase.
∗ Filtration phase: In the filtration phase, the cloud

server recursively searches on E(T) to find a candi-
date set C, which contains all encrypted data records
that possibly fall in Q. The cloud server starts the
search from the root node. When the searched node
is an internal node ({CBl,i,1, CBl,i,2, CBu,i,1, CBu,i,2}di=1, p),
the searcher checks whether B intersects with Q by
checking

∑d
i=1(CBl,i,1RTu,iCBl,i,2 + CBu,i,1RTl,iCBu,i,2)

?
= 0.

If
∑d
i=1(CBl,i,1RTu,iCBl,i,2 + CBu,i,1RTl,iCBu,i,2) = 0, the

searcher needs to search each node.pi for pi ∈ p. When the
searched node is a leaf node ({CPi,1, CPi,2}di=1,AESK(x)).
The searcher adds ({CPi,1, CPi,2}di=1,AESK(x)) into the can-
didate set C.
∗ Verification phase: In the verification phase, the

cloud server verifies whether each candidate encrypted
data ({CPi,1, CPi,2}di=1,AESK(x)) is in Q or not. If∑d
i=1 CPi,1PTiCPi,2 = 0, the cloud server adds AESK(x) into

the query result R.
Then, the cloud server returns the query result R to the

query user via a secure channel. On receiving R, the query
user decrypts each AESK(x) ∈ R with K and obtains the
data point x.

7 SECURITY ANALYSIS

In this section, we analyze the security of our PRQ scheme.
Since PIPE scheme and RIPE scheme are important building

blocks of our PRQ scheme. Thus, we first prove the security
of PIPE scheme and RIPE scheme, and then analyze the
security of our PRQ scheme.

7.1 Security of PIPE Scheme

PIPE scheme is essentially a functional encryption scheme
that is usually proved under two kinds of security mod-
els, i.e., selective security and adaptive security. Selective
security guarantees the privacy of messages that are fixed
before the adversary intersects with the system. While
adaptive security guarantees that the privacy of messages
that are adaptively chosen at any time (can be before or
after the adversary intersects with the system). Due to the
hardness of achieving adaptive security, the overwhelming
majority of functional schemes prove their security under
the selective security model [21]. Same as the existing
schemes in [22], [23], we prove that PIPE is selectively
secure in the real/ideal world model. Before defining the
real and ideal worlds, we first define the leakage of the
PIPE scheme. Suppose that {CPi,1, CPi,2}di=1 and {PTi}di=1

are respectively the ciphertext of x and the point inter-
section token of Q. The leakage of the PIPE scheme is
LP (x,Q) = PipeQuery({CPi,1, CPi,2}di=1, {PTi}di=1). Then,
we formally define the real and ideal worlds.

Real world: In the real world, there are two participants
including a probabilistic polynomial time (PPT) adversaryA
and a challenger. They interact with each other as follows.
• Key generation: A chooses a data point x and

sends it to the challenger. Given N , the challenger calls
PipeKeyGen(N) to generate the secret key skP = {M̃, M̃′}.
Then, the challenger encrypts x as {CPi,1, CPi,2}di=1 ←
PipeEnc(x, skP ).
• Token generation phase 1: A chooses p1 query ranges

{Qβ}p1β=1 and sends them the challenger, where p1 is a poly-
nomial number. The challenger generates a point intersec-
tion token for Qβ as {PTβi }di=1 ← PipeTokenGen(Qβ , skP )
for β = 1, 2, · · · , p1. Finally, the challenger returns
{{PTβi }di=1}

p1
β=1 to A.

• Challenge phase: The challenger returns the ciphertext
{CPi,1, CPi,2}di=1 to A.
• Token generation phase 2: Same as the token generation

phase 1, A chooses p2 − p1 query ranges {Qβ}p2β=p1+1 and
gets the query tokens {{PTβi }di=1}

p2
β=p1+1 from the chal-

lenger, where p2 is a polynomial number.
Ideal world: The ideal experiment involves a PPT adver-

sary A and a simulator with the leakage LP . They interact
with each other as follows.
• Key generation: A chooses a data point x and sends it

to the simulator. Then, the simulator randomly chooses 2d
vectors {CP′i,1, CP′i,2}di=1 as the ciphertext of x.
• Token generation phase 1: A chooses p1 query ranges

{Qβ}p1β=1 and sends them the simulator, where p1 is a poly-
nomial number. The simulator randomly generates point
intersection tokens for {Qβ}p1β=1. For eachQβ , the simulator
uses LP to generate a random number rβ such that{

rβ = 0 If LP (x,Qβ) = 0;

rβ 6= 0 If LP (x,Qβ) 6= 0.
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Then, the simulator generates d matrices {PT′βi }di=1 such
that

d∑
i=1

(CP′i,1PT
′β
i CP
′
i,2) = rβ .

Since rβ is a random number, {PT′βi }di=1 are random matri-
ces. Then, the simulator returns {{PT′βi }di=1}

p1
β=1 to A.

• Challenge phase: The simulator returns the ciphertext
{CP′i,1, CP′i,2}di=1 to A.
• Token generation phase 2: Same as the token generation

phase 1, A chooses p2 − p1 query ranges {Qβ}p2β=p1+1 and
gets the query tokens {{PT′βi }di=1}

p2
β=p1+1 from the simula-

tor, where p2 is a polynomial number.
In the real experiment, the view of A is

ViewA,Real = {{CPi,1, CPi,2}di=1, {{PT
β
i }di=1}

p2
β=1}. In

the ideal experiment, the view of A is ViewA,Ideal =

{{CP′i,1, CP′i,2}di=1, {{PT′
β
i }di=1}

p2
β=1}. Based on ViewA,Real

and ViewA,Ideal, we can formally define the selective
security of the PIPE scheme.

Definition 1 (Security of PIPE Scheme). The PIPE scheme
is selectively secure with the leakage LP iff for any PPT
A issuing a polynomial number of query token gener-
ations, there exists a simulator such that the advantage
thatA can distinguish the views of real and ideal worlds
is negligible.

Theorem 1. The PIPE scheme is selectively secure with the
leakage LP .

Proof: We prove the PIPE scheme is selectively
secure by proving that ViewA,Real is indistinguish-
able from ViewA,Ideal. Since the ciphertext and to-
kens in ViewA,Ideal are randomly generated, distinguish-
ing ViewA,Real from ViewA,Ideal is equivalent to distin-
guish ViewA,Real from random numbers. In the follow-
ing, we show that A cannot distinguish ViewA,Real =

{{CPi,1, CPi,2}di=1, {{PT
β
i }di=1}

p2
β=1} from random numbers.

• A cannot distinguish {CPi,1, CPi,2}di=1 from random
numbers. Since the ciphertexts of CPi,1 and CPi,2 re-
spectively involve random numbers {ti,Rx,i, r1}di=1 and
{R′x,i, r2}di=1, which make {CPi,1, CPi,2}di=1 look like ran-
dom numbers.
• A cannot distinguish {{PTβi }di=1}

p2
β=1 from random

numbers. This is because {PTβi }di=1 contains random num-
bers {RQβ ,i, rqβ , si}di=1, which make {{PTβi }di=1}

p2
β=1 look

like random numbers.
Thus, A cannot distinguish the views of real and ideal

worlds, and the PIPE scheme is selectively secure. �

7.2 Security of RIPE Scheme

Theorem 2. The RIPE scheme is also selectively secure.

Proof: The proof of RIPE’s selective security is the same
as that of the PIPE’s selective security, and the details are
omitted here. �

7.3 Security of PRQ Scheme

In this subsection, we analyze the security of the PRQ
scheme. We show that the dataset, range query requests as
well as query results are privacy-preserving and can be kept
from the cloud server. Meanwhile, we show that the single-
dimensional privacy of the query results can be preserved.
• The dataset is privacy-preserving. In the PRQ scheme,

the cloud server is assumed to be honest-but-curious, so it
may be curious about the plaintext of the dataset. However,
when running the PRQ scheme, the cloud server can only
access the encrypted R-tree E(T). On the one hand, the
internal nodes and leaf nodes in E(T) have been respec-
tively encrypted by the PIPE scheme, RIPE scheme and AES
algorithm. Since the PIPE scheme, RIPE scheme, and AES
algorithm are secure, the cloud server cannot recover the
underlying points of E(T)’s leaf nodes and the underlying
MBRs of E(T)’s internal nodes. On the other hand, since
the child nodes of each internal node in E(T) have been
permutated, the cloud server cannot obtain the information
about the plaintext dataset from the structure ofE(T). Thus,
the cloud server cannot obtain the plaintext dataset from
the encrypted R-tree E(T). In addition, the cloud server
may attempt to infer the plaintext dataset while perform-
ing range queries over E(T). However, when the cloud
server performs queries over the internal nodes and leaf
nodes, the security of the PIPE scheme and RIPE scheme
guarantees that the cloud server can only obtain (i) whether
the data points in leaf nodes are in the query range; and
(ii) whether the ranges in internal nodes intersect with
the query range. Thus, the cloud server cannot obtain the
plaintext dataset during the process of query processing.
Therefore, the dataset is privacy-preserving.
• The query requests are privacy-preserving. The query

requests should be kept from the cloud server. On the one
hand, the query rangeQ has been encrypted into two tokens
{PTi}di=1 and {RTl,i, RTu,i}di=1, and the security of the PIPE
scheme and RIPE scheme can guarantee that the cloud
server cannot infer the plaintext query range from the to-
kens {PTi}di=1 and {RTl,i, RTu,i}di=1. On the other hand, the
tokens {PTi}di=1 and {RTl,i, RTu,i}di=1 involve random num-
bers {rq, r′q} and random matrices {RQ,i,RQ,l,i,RQ,u,i}.
These random numbers and random matrices guarantee
that the pattern of the query ranges is hidden, i.e., which
queries refer to the same query range. In other words, one
query range Q will have two different pairs of point/range
tokens when it is encrypted twice. Therefore, the query
requests are privacy-preserving.
• The query results are privacy-preserving. The query results

should be kept from the cloud server. The query results are
ciphertexts of data points AESK(x) that are encrypted by
the AES algorithm. Since the security of AES algorithm can
guarantee that the cloud server cannot infer the plaintext
data points from the corresponding ciphertexts, the query
results are also privacy-preserving.
• The single-dimensional privacy of the PRQ scheme can

be preserved. The basic operations of query processing in
the PRQ scheme are point intersection query and range
intersection query. To preserve the single-dimensional pri-
vacy, we respectively choose random numbers {si}di=1 and
{sl,i, su,i}di=1 for query range Q̃i and {Q̄u,i, Q̄l,i}. In this

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 08,2022 at 23:37:16 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3101120, IEEE
Transactions on Dependable and Secure Computing

11

case, only the cloud server processes the queries using all
dimensions, can it remove the random numbers {si}di=1

and {sl,i, su,i}di=1 and get the correct results. In this case,
the cloud server has no idea on the query result for each
dimension of the query range. Thus, the single-dimensional
privacy of the PRQ scheme can be preserved.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our PRQ
scheme and compare it with other privacy-preserving multi-
dimensional range query schemes.

8.1 Performance of PRQ Scheme

We evaluate the computational cost of our PRQ scheme from
the perspective of dataset encryption, query token genera-
tion, range query processing, and query result recovery.

Experiment Setting: We implement our PRQ scheme
and the compared schemes in Java and conduct experi-
ments on a machine with an Intel(R) Core(TM) i7-3770 CPU
@3.40GHz, 16GB RAM and Windows 10 operating system.
The dataset we evaluate is a part of US Census Data (1990)
[24]. For the R-tree, the number of child nodes for each node
is from 2 to 8. For the AES algorithm, we set the length of the
encryption key K to 256 bits. Meanwhile, each experiment
is conducted 10000 times, and the average result is reported.

8.1.1 Dataset Encryption
The dataset encryption algorithm is to build and encrypt an
R-tree for the dataset X , and the major computational cost is
from the dataset encryption. In the dataset encryption, there
are two types of basic encryption operations, i.e., point en-
cryption and range encryption. Encrypting one point takes
O(d ∗ N2) computational cost and encrypting one range
also takes O(d ∗N2), where d is the number of dimensions
of X and N is the square root of the upper bound of X ’s
values. Besides N and d, the computational cost of dataset
encryption is affected by the size of the dataset, i.e., |X |.
Next, we first show how the computational cost of the
point encryption and range encryption varies with N and
d. Then, we evaluate how the computational cost of dataset
encryption varying with |X |, N and d.
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Fig. 3. Computational cost of point encryption and range encryption

• Point encryption and range encryption: In Fig. 3(a),
we plot the computational cost of the point encryption
varying with N and d. In this experiment, we set N =
{20, 40, 60, 80, 100} and d ∈ {2, 4, 6, 8}. From this figure, we

can see that the computational cost of the point encryption
linearly increases with d and quadratically increases with
N . In Fig. 3(b), we plot the computational cost of the range
encryption varying with N and d. In this experiment, we
also set N = {20, 40, 60, 80} and d ∈ {2, 4, 6, 8}. We can see
that the computational cost of the range encryption linearly
increases with d and quadratically increases with N .
• Dataset encryption: In Fig. 4(a), we plot the computa-

tional cost of dataset encryption varying with |X | and d. In
this experiment, we set |X | = {10K, 20K, · · · , 100K}, N =
20, and d = {2, 4, 6, 8}. This figure shows that the computa-
tional cost of dataset encryption linearly increases with |X |
and linearly increases with d. In Fig. 4(b), we plot the com-
putational cost of dataset encryption varying with |X | and
N . In this experiment, we set |X | = {10K, 20K, · · · , 100K},
N = {20, 40, 60, 80, 100}, and d = 2. This figure shows
that the computational cost of dataset encryption linearly
increases with |X | and quadratically increases with N .
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Fig. 4. Computational cost of dataset encryption

8.1.2 Query Token Generation
The query token generation algorithm generates a point
token and a range token for the query range, and the
corresponding computational cost is O(d∗N3). In Fig. 5, we
plot the computational cost of the token generation varies
with d and N . In this experiment, we set d ∈ {2, 4, 6, 8} and
N ∈ {20, 40, 60, 80, 100}. From this figure, we can see that
the computational cost linearly grows with d. When fixing
d, the computational cost cubically grows with N .
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Fig. 5. Computational cost of token generation versus d and N

8.1.3 Range Query Processing
The range query processing algorithm is to search for the
query result over the encrypted dataset E(X ). The basic
operations of the range query include (i) point intersec-

tion query, i.e., determine whether x
?
∈ Q; and (ii) range
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TABLE 2
Comparison between our PRQ scheme and existing schemes

Scheme Asymptotic search
complexity Basic operation Query

privacy

Single-
dimensional

privacy

Number of
cloud servers

Boneh et al’s scheme [9] O(|X | ∗ d) Bilinear pairing ×
√

Single
Shi et al. scheme [10] O(|X | ∗ (logN2)d) Bilinear pairing

√ √
Single

Maple [11] O(log |X | ∗ d) Bilinear pairing ×
√

Single
LSED+ [12] O(log |X | ∗ (logN2)2 ∗ d) Bilinear pairing

√
× Single

Wang et al. scheme [13] O(log |X | ∗ d) Multiplication over R
√

× Single
Mei et al. scheme [15] O(log |X | ∗ d) Multiplication over R

√
× Single

TRQED [16] O(log |X | ∗ d) Multiplication over R
√

× Single
TRQED+ [16] O(log |X | ∗ d) Multiplication over R

√ √
Two

Our PRQ O(log |X | ∗ d ∗N2) Multiplication over R
√ √

Single

intersection query, i.e., determine whether B ∩ Q ?
= ∅.

The computational cost of the point intersection query and
range intersection query is O(d ∗ N2). In addition, besides
N and d, the computational cost of range query over the
encrypted dataset is related to the size of the dataset, i.e.,
|X |. Specifically, the computational complexity of range
query is O(d ∗N2 ∗ log |X |). In the following, we show how
the computational cost of point and range intersection query
varies with d and N . Then, we show how the computational
cost of range query over dataset varies with |X |, N and d.
• Point and range intersection query: In Fig. 6(a), we plot

the computational cost of the point intersection query varies
with d and N . In this experiment, we set d = {2, 4, 6, 8} and
N ∈ {20, 40, 60, 80, 100}. From this figure, we can see that
the computational cost of the point query linearly grows
with d and quadratically grows with N . In Fig. 6(b), we plot
the computational cost of the range intersection query varies
with d and N . In this experiment, we set d = {2, 4, 6, 8} and
N ∈ {20, 40, 60, 80, 100}. This figure also shows that the
computational cost of the range query also linearly grows
with d and quadratically grows with N .
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Fig. 6. Computational cost of point and range intersection query

• Range query over the dataset: In Fig. 7(a), we plot
the computational cost of range query processing varies
with |X | and d. In this experiment, we set |X | =
{10K, 20K, · · · , 100K}, d = {2, 4, 6, 8} and N = 20. For
each range query, there are 10 to 20 data records in the
dataset that satisfy the query condition. From this figure,
we can see that the computational cost of range queries
logarithmically increases with |X | and also increases with
d. In Fig. 7(b), we plot the computational cost of range
query processing varies with |X | and N . In this experi-
ment, we set |X | = {10K, 20K, · · · , 100K}, d = 2 and

N = {20, 40, 60, 80, 100}. The query result of each query
also contains 10 to 20 data records. This figure shows
that the computational cost of range queries logarithmically
increases with |X | and quadratically increases with N .
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Fig. 7. Computational cost of range query over the encrypted dataset

8.1.4 Query Result Recovery
In the PRQ scheme, the query results are encrypted by the
AES algorithm. Thus, the computational cost of the query
result recovery depends on the decryption algorithm. For a
d-dimensional point, the decryption cost is about 3.96 µs,
where d ∈ {2, 4, 6, 8}. Thus, the query result recovery is
pretty efficient.

8.2 Performance Comparison

We compare our PRQ scheme with existing privacy-
preserving multi-dimensional range query schemes. Since
the security of the OPE-based schemes [5], [6] is weak. The
bucketization based range query schemes [7], [8] impose
most of the computational cost on query users, and the cor-
responding query results contain false positive data. Thus,
we do not take these schemes into comparison. As shown in
TABLE 2, we compare our scheme with other schemes from
five aspects, i.e., (i) asymptotic search complexity; (ii) basic
operation when calculating the asymptotic search complex-
ity; (iii) query privacy; (iv) single-dimensional privacy; and
(v) the number of deployed cloud servers. TABLE 2 shows
that Boneh et al.’s scheme in [9], Shi et al.’s scheme in
[10], Maple scheme in [11] and LSED+ scheme in [12] are
inefficient in range queries because they are designed based
on the public key cryptography and their basic operations
are bilinear pairing. Especially, the computational cost of
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Boneh et al.’s scheme in [9] and Shi et al.’s scheme in [10]
is linear to the size of the dataset. Meanwhile, Boneh et al.’s
scheme in [9] and Maple scheme in [11] cannot preserve the
query privacy. Although the computational cost of Wang et
al.’s scheme in [13], Mei et al.’s scheme in [15], and TRQED
scheme in [16] logarithmically increases with the size of the
dataset, they fail to preserve the single-dimensional privacy.
Thus, TRQED+ scheme in [16] and our PRQ scheme are
the only two schemes with logarithmic search efficiency,
query privacy and single-dimensional privacy simultane-
ously. However, the TRQED+ scheme is built in the two-
server setting, which is impractical in some real scenarios.
Thus, our PRQ scheme is the only privacy-preserving range
query scheme with efficient query processing, query pri-
vacy, single-dimensional privacy in the single-server setting.

To validate the query efficiency of our PRQ scheme,
we compare its range query efficiency with that of existing
schemes. Among existing schemes, Maple scheme [11] and
TRQED+ scheme can be regarded as two representatives,
where Maple scheme [11] was designed based on the public
key cryptography and TRQED+ scheme [16] was designed
based on symmetric matrix encryption scheme. Meanwhile,
TRQED+ scheme [16] is the most state-of-the-art scheme.

Maple scheme [11] was designed based on the bilin-
ear pairing. In our experiment, we implement its bilinear
pairing operations by JPBC Pairing-Based Cryptography
Library and set the security parameter to 512 bits, i.e.,
κ = 512. TRQED+ scheme [16] was designed using matrix
encryption and permutation technique. Although TRQED+

scheme [16] is able to preserve the privacy of access pat-
tern, such function must be supported by a homomorphic
encryption based flag label, which will incur additional
cost. For a fair comparison, we compare our PRQ scheme
with the TRQED+ scheme without flag labels. Since Maple
scheme [11] and TRQED+ scheme [16] also employ R-tree
to represent datasets and reduce the problem of multi-
dimensional range queries into that of point intersection
and range intersection, we experimentally compare our PRQ
scheme with Maple scheme and TRQED+ from the aspects
of point intersection query, range intersection query, and
range query processing.
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Fig. 8. Comparison of point and range intersection queries

• Point and range intersection queries comparison: In
Fig. 8(a) and Fig. 8(b), we respectively plot the computa-
tional cost of processing one point intersection query and
one range intersection query varying with d among the
Maple scheme [11], TRQED+ scheme and our PRQ scheme.
In both experiments, the parameter d ranges from 2 to 8
and the computational cost of our PRQ scheme is evaluated

under different N values, i.e., N = {20, 40, 60, 80, 100}.
These two figures show that the point intersection and
range intersection queries of our PRQ scheme and the
TRQED+ scheme are much more efficient than the public
key cryptography based Maple scheme. Although the query
efficiency of our scheme is a little lower than that of the
TRQED+ scheme, it is also pretty efficient. For example,
when N = 100 and d = 8, processing one point intersection
query and one range intersection query only takes about
0.442 ms and 2.264 ms, respectively.
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Fig. 9. Computational cost of range query processing versus |X |

• Range queries comparison: In Fig. 9, we plot the compu-
tational cost of range query processing among the Maple
scheme [11], TRQED+ scheme, and our PRQ scheme. In
this experiment, we set the parameters as d = 8, |X | =
{10K, 20K, 30K, 40K, 50K}, and N = 20. For each range
query, there are 10 to 20 data records in the dataset that
satisfies the query condition. This figure shows that the
range query efficiency of our PRQ scheme and the TRQED+

scheme is much more efficient than the public key cryptog-
raphy based Maple scheme. Although the query efficiency
of our scheme is a little lower than that of TRQED+ scheme,
it is also efficient, e.g., when |X | = 100K, processing one
range query only takes about 70 ms.

In addition, our scheme deals with range queries in
a single server without any communication cost while
TRQED+ scheme does range queries by two servers, which
requires communication between them. As shown in TABLE
3, we experimentally quantify the communication cost of
each range query in TRQED+ scheme. In this experiment,
we set d = 8, |X | = {60K, 80K, 100K}. For each range
query, there are 10 to 20 data records in the dataset that
satisfies the query condition. From TABLE 3, we can see
that the communication cost of TRQED+ scheme increases
with the size of the dataset |X |. When |X | = 100K, the
communication cost is about 1.84 MB.

TABLE 3
Communication cost comparison of each range query

|X | = 60K |X | = 80K |X | = 100K

Our Scheme 0 MB 0 MB 0 MB
TRQED+ scheme 1.37 MB 1.60 MB 1.84 MB

9 RELATED WORK

Privacy-preserving multi-dimensional range queries over
encrypted data have been extensively studied in the liter-
ature and various schemes were proposed.
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The order-preserving encryption (OPE) works [5], [6] can
intrinsically support the range queries because the order
of the plaintext data can be preserved in the ciphertexts.
However, as shown in [25], the OPE technique is not secure
under the ordered chosen plaintext attack. Thus, the security
of the OPE-based range query schemes is weak because they
will leak the order information of the plaintext data.

To prevent from leaking the order information, the buck-
etization based range query schemes were proposed in [7],
[8]. In such schemes, the plaintext space is divided into
buckets such that the order information of data in the
same bucket is preserved. Specifically, Lee [7] proposed
a secure encryption scheme with ordered bucketization to
support range queries but it can only support range queries
for single-dimensional data. Hore et al. [8] introduced a
bucketization based range query scheme, and they designed
an optimization algorithm to adjust the trade-off between
the computational cost of query processing and information
leakage. However, both schemes in [7], [8] have two limita-
tions. First, most of the computational costs in range queries
are imposed on query users who are usually considered to
be resource-constrained. Second, the query results contain
some false positive records, so the query users have to take
additional computational cost to filter out the correct results.

Some privacy-preserving multi-dimensional range query
schemes were proposed based on the public key cryptog-
raphy [9]–[11]. Specifically, Boneh et al. [9] presented a
privacy-preserving multi-dimensional range query scheme
based on the public key cryptography based hidden vec-
tor encryption (HVE). Shi et al. [10] decomposed multi-
dimensional range queries to several single-dimensional
range queries. Then, they employed the interval tree as
index and bilinear pairing based encryption algorithm to
design a privacy-preserving multi-dimensional range query
scheme. Wang et al. [11] proposed a privacy-preserving
multi-dimensional range query scheme based on the public
key cryptography based hidden vector encryption tech-
nique. However, since the public key cryptography involves
high computational cost, the above schemes are inefficient.

To improve the query efficiency, some efficient multi-
dimensional range query schemes were proposed [12]–[15].
Lu et al. [12] deployed B+-tree structure and the symmetric
key encryption scheme to design a range query scheme
for the single-dimensional data. Since multi-dimensional
range queries can be decomposed into multiple single
range queries, the proposed scheme in [12] can be ex-
tended to support multi-dimensional range queries. The
schemes presented in [13], [14] also decomposed the multi-
dimensional range queries into multiple single-dimensional
range queries. Further, they were proposed by using the R-
tree as the index structure and a kind of matrix encryption
technique (i.e., asymmetric privacy-preserving encryption
scheme or its variant) as the encryption algorithm. How-
ever, range query decomposing results in the leakage of
the single-dimensional privacy, i.e., the records satisfying
each single dimension of the range query will be leaked.
Although the scheme presented in [14] attempted to solve
the single-dimensional privacy leakage by padding addi-
tional dimensions, it still cannot fully protect the single-
dimensional privacy especially after the sever processes a
large number of range queries. To fully preserve the single-

dimensional privacy, Yang et al. [16] proposed a new range
query scheme based on [14]. The proposed scheme can
not only preserve the single-dimensional privacy but also
preserve the access pattern on the R-tree. However, the
proposed scheme was constructed under the non-colluding
two-server model. Compared with a single-server model,
the two-serve model is less practical due to its limitations
in the non-colluding assumption and additional communi-
cation cost required between the two servers. Mei et al. [15]
proposed a flexible multi-dimensional range query scheme
based on an interval tree structure, which still suffers from
the problem of single-dimensional privacy leakage. Mean-
while, this scheme is impractical because the ranges that a
query user can query must be predefined.

10 CONCLUSION

In this paper, we have proposed a practical and privacy-
preserving multi-dimensional range query scheme over
encrypted data. In our scheme, we indexed the multi-
dimensional dataset to an R-tree and the R-tree based multi-
dimensional range query is reduced to the operations of
point intersection and range intersection. Then, we deli-
cately designed a PIPE scheme and a RIPE scheme such
that we can privately determine whether a point is in the
query range or whether two ranges have an intersection
through their ciphertexts. Furthermore, we proposed our
PRQ scheme based on the PIPE scheme and RIPE scheme.
Meanwhile, we analyzed the security of our PRQ scheme
and conducted experiments to validate its efficiency. In
our future work, we plan to design more efficient multi-
dimensional range query scheme over encrypted data.
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